If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8n^2-16n-92=0
a = 8; b = -16; c = -92;
Δ = b2-4ac
Δ = -162-4·8·(-92)
Δ = 3200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3200}=\sqrt{1600*2}=\sqrt{1600}*\sqrt{2}=40\sqrt{2}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-40\sqrt{2}}{2*8}=\frac{16-40\sqrt{2}}{16} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+40\sqrt{2}}{2*8}=\frac{16+40\sqrt{2}}{16} $
| 3(x+1)-x=7 | | 9m+8=19 | | 16x2-8x+1=0 | | 16x2=-8x+1 | | 3y+6=2y+8 | | 2b-3=5b+12 | | -5y=y+4 | | -5y=4+4 | | 12/x=2/21 | | 5z+1/3=7 | | 0.36+0.12y=-1.15y^2 | | (4x-1)^2=6 | | 3x−5=2x+14 | | (6x+3)-(3x-7)=12 | | 80=1.8x+32 | | 2x²=72 | | 5(x+3)=33 | | 3x=11x-64 | | 3x-5=2x/3+9 | | 7^(x-3)=4^(2x) | | -3y+8=2y+3 | | 14t^2-8t+1=0 | | 56x^2-8x+1=0 | | 3y+8=2y+3 | | 61x^2-32x+4=0 | | (3)/(5)x=96 | | -m-2=-1 | | 3800=x+(0.03x) | | 3/5x=96 | | x+(0.03x)=3800 | | 2b+18=12 | | 10+y/3=1 |